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Abstract. We consider the dynamics of fluid interface in heterogeneous porous media with uncertain 

hydraulic conductivities.  Modeling hydraulic conductivity as a random field of given statistics 

allows us to predict the interface dynamics and to estimate the corresponding predictive uncertainty 

by means of statistical moments.  The novelty of our approach to obtaining the interface statistics 

consists of dynamically mapping the Cartesian coordinate system onto a coordinate system 

associated with the moving front.  This transforms a difficult problem of deriving closure 

relationships for highly nonlinear stochastic flows with free surfaces into a relatively simple problem 

of deriving stochastic closures for linear flows in domains with fixed boundaries.  We derive a set of 

deterministic equations for the statistical moments of the interfacial dynamics, which hold in one and 

two spatial dimensions, and analyze their solutions for one-dimensional flow. 
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1. Introduction.  Free surface (interface, moving front) problems arise in a variety of applications, 

such as wetting and drying of porous media, pumping in unconfined aquifers, secondary oil recovery, 

heat conduction and welding, diffusion-limited aggregation, crystal growth, semiconductor 

fabrication, and snowflake formation.  Traditional, deterministic modeling of these and other similar 

phenomena assumes that the ambient environments are homogenous and/or that the relevant system 
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parameters, such as hydraulic conductivity and thermal diffusivity, are known with certainty in all of 

their relevant details.  However, in most applications, interfaces propagate in heterogeneous 

environments, whose system parameters can only be sampled at selected locations in space and/or 

time.  The need to assign parameter values to the points where measurements are not available, 

combined with measurement errors, introduces parameter uncertainty.  This, in turn, leads to 

uncertainty in predictions of the interface dynamics.  To make such predictions and to quantify the 

predictive uncertainty, it is common to treat the system parameters as random fields, and the 

corresponding governing equations as stochastic. 

 

While flow and transport in randomly heterogeneous porous media with fixed boundaries have been 

studied extensively [1-4], analysis of the interfacial dynamics in random media is still in its infancy.  

A reason for the relative lack of progress in analyzing this important problem is its high degree of 

nonlinearity.  Since the randomness of hydraulic conductivity of a porous medium causes the free 

surface dynamics to be stochastic, ensemble averaging of the flow equations involves calculating 

ensemble means of such quantities as integrals of random functions over random domains and 

random functionals.  One approach to dealing with this problem is to employ simplifying physical 

assumptions, such as the Dupuit (shallow water) approximation [5] or a  uniform flow approximation 

[6], which effectively eliminate moving boundaries (interfaces).  Early attempts to analyze the 

interface dynamics [7,8] have relied on the expansions of integrals over the random domains into a 

Taylor series around the corresponding ensemble mean geometries.  To make the analysis and 

numerical implementation of this procedure tractable, these studies linearize the problem by retaining 

only the leading term in such expansions.  However, an analysis in [8] of the propagation of one-

dimensional fronts demonstrates that such a linearization leads to approximations that are less than 

optimal, in that the subsequent perturbation expansions do not contain all the relevant terms. 

 

The main goal of this study is to introduce an approach that does not require a linearization of the 

kind proposed in [7,8].  We formulate governing equations for the interface dynamics in random 

porous media in Section 2.  The key part of our approach, a stochastic mapping of the random, time-

varying flow domain onto a fixed domain, is presented in Section 3.  Section 4 provides the 

corresponding mappings for the flow equations.  This enables us to use standard perturbation 

techniques to derive, in Sections 5 and 6, closure approximations for the stochastic flow equations in 

two dimensions.  Section 7 contains a brief outline of a numerical algorithm for solving the resulting 
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deterministic moment equations.  In Section 8, we analyze the accuracy of our approximations in a 

one-dimensional setting, by comparing the analytical solutions of moment equations with their exact 

counterparts. 

 

2. Problem Formulation.  Consider the motion of a fluid-fluid interface in a randomly 

heterogeneous porous medium  that is bounded by the surface TΩ TΓ .  Following [8], we set gravity, 

capillary length, and the viscosity of one fluid to zero.  In the inviscid fluid (air), the pressure is 

constant and may be set to zero.  The viscous, incompressible fluid (water) occupies the flow domain 

 , which is bounded either entirely by a free surface γ or by a combination of γ and some 

segments of  (Figure 1).  Such flow is described by a combination of Darcy’s law and mass 

conservation, 

Ω ( TΩ ⊂ Ω )

TΓ

 ,         ),()(),( thKt rrrq ∇⋅−= ),( tf rq =⋅∇ ,         )(tΩ∈r , (1) 

subject to the boundary conditions 

 ),(),( tHth rr = ,         DΓ∈r , (2a) 

 ),(),()( tQt rrqrn =⋅ ,         NΓ∈r , (2b) 

 0),( =th r ,         )(tγ∈r . (2c) 

where q is the Darcy flux, K is the hydraulic conductivity of a porous medium, h is the hydraulic 

head, f is the source function, and n is unit normal to the surface D N γΓ = Γ ∪ Γ ∪  consisting of 

Dirichlet segments DΓ , Neumann segments NΓ , and a moving front γ .  The functions H and Q are 

the prescribed hydraulic head and flux on the Dirichlet and Neumann boundary segments, 

respectively.  The dynamics of the free surface )(tγ  is described by  

 
ee

n

n
t

n
tV

dt
d ),(),( RVnRR

== ,         )(tγ∈R ,  (2d) 

where ne is the medium’s porosity, and mass conservation requires that the normal velocity of the 

front satisfies .  Equations (1) and (2) constitute the widely used Green and 

Ampt [9] model for the propagation of wetting fronts in porous media. 

),(),(),( tttVn RnRqR ⋅=
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Figure.1. A schematic representation of the dynamics of free surfaces in porous media. 

 

Uncertainty in the hydraulic conductivity of a porous medium is captured by representing K = K(r) 

as a scalar random field with given mean K , variance 2
Kσ , and a two point correlation function 

),( 21 rrKρ .  Other possible sources of randomness, which we do not consider here, are the driving 

forces f, H, and Q, and porosity ne.  Our goal is to develop a set of deterministic equations for the 

mean and variance of the system states.  The former estimates the interfacial dynamics, while the 

latter quantifies the uncertainty associated with such an estimate. 

 

3. Mapping of the Flow Domain.  Consider a curvilinear coordinate system ( , )ξ η , which is tied to 

the moving interface )(tγ .  An advantage of using such a coordinate system is that the random, time-

varying flow domain  in the Ω ( , )x y  Cartesian coordinate system becomes a fixed regular-shaped 

domain (e.g., a square or a rectangle) W in the ( , )ξ η  coordinate system (see Figure 2). 
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Figure 2.  A mapping of the flow domain. 

 

Following [10], we define a stochastic mapping W→Ω  as a solution of the Laplace equations 

 
2 2

2 2 0x x
ξ η

∂ ∂
+ =

∂ ∂
,        

2 2

2 2 0y y
ξ η

∂ ∂
+ =

∂ ∂
, (3) 

subject to the boundary conditions 

 
(1, ) ( ), (1, ) ( )

(0, ) ( ), (0, ) ( )D D

x x y y
x x y y

γ γη η η η
η η ηΓ Γ

= =
= = η

0

 (4a) 

and 

 0

1 1

( ,0) ( ), ( ,0) ( )
( ,1) ( ), ( ,1) ( )

x x y y
x x y y

ξ ξ ξ ξ
ξ ξ ξ

Γ

Γ Γ

= =
= = ξ

Γ . (4b) 

For the mapping (3) - (4) to exist, it is necessary that the boundary Γ  of the flow domain Ω  be 

piecewise smooth [10].  This condition holds for most physical applications, such as (unstable) front 

propagation in porous media.  Moreover, as will become clear below, it is sufficient for (3) – (4) to 

exist in a weak sense, which further smoothes the boundary Γ  through its ensemble averaging. 

 

We use Reynolds decomposition A A A= + %  to represent a random field  as the sum of its mean A A  

and a zero-mean random fluctuation .  (In the following, we use A% A  and A  interchangeably to 

indicate the ensemble mean of A.)  Then stochastic averaging of (3) - (4) yields the ensemble mean 

component of the stochastic mapping as a solution of 
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2 2

2 2 0x x
ξ η

∂ ∂
+ =

∂ ∂
, (5) 

subject to 

 
( ) ( )
( ) ( )

0

1

(1, ) ( ), ,0 ,
(0, ) ( ), ,1 .D

x x x x
x x x x

γη η ξ ξ
η η ξ ξ

Γ

Γ Γ

= =
= =

 (6) 

Here ( ) ( )00 1x xγ Γ= , ( ) ( )11x xγ Γ= 1 .  Introduction of the Green’s function ( )1 1, | ,L ξ η ξ η  as a 

solution of the Poisson equation, 

 ( ) (
2 2

1 12 2
1 1

L L )δ ξ ξ δ η η
ξ η

∂ ∂
+ = − − −

∂ ∂
, (7) 

subject to the homogeneous boundary conditions, 

 ( )1 1, | 0,L ξ η ξ η= = ( )1 1, | 1,L ξ η ξ η= = ( )1 1, | , 0L ξ η ξ η = = ( )1 1, | , 1L ξ η ξ η = =0, (8) 

allows us to rewrite (5) – (6) as 

( ) ( ) ( ) ( ) ( )
11 1 1 1

1 1

1 1 1 1 1 1 0 1
1 1 10 01 0 1 0

, D
L L Lx d x x d x xγ

ξ ξ η η

ξ η η η η ξ ξ ξ
ξ ξ ηΓ Γ Γ

= = = =

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂⎜ ⎟⎜ ⎟= − − − −
⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ ∫
L
η

. (9) 

An expression for y  is obtained in a similar fashion. 

 

An equation for the random fluctuations x%  is obtained by subtracting (5) – (6) from (3) – (4), 

 
2 2

2 2 0x x
ξ η

∂ ∂
+ =

∂ ∂
% %

, (10) 

subject to 

 
( ) ( )
( ) ( )

0

1

(1, ) ( ), ,0 ,
(0, ) 0, ,1 .

x x x x
x x x

γη η ξ ξ
η ξ ξ

Γ

Γ

= =
= =

% % % %

% % %
 (11) 

To find the boundary functions 0( )x ξΓ%  and 1( )x ξΓ% , we note that both x  and x x+ %  belong to 0Γ  and 

, and that the following equalities hold, 1Γ

 ,       0 (1) (0)x xγΓ =% % 0(0) 0xΓ =% ,       1(1) (1)x xγΓ =% % ,      . (12) 1(0) 0xΓ =%

Expanding 0( )x ξΓ%  and 1( )x ξΓ%  in a Taylor series, and retaining the leading terms in these expansions, 

yields 
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0

0
0

1

( ) (0)

dx
d

x x
dx
d

ξ
γ

ξ

ξ
ξ ξ

ξ

Γ

Γ
Γ

=

⎛ ⎞
⎜ ⎟
⎝ ⎠= ⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

% % ,               

1

1
1

1

( ) (1)

dx
d

x x
dx
d

ξ
γ

ξ

ξ
ξ ξ

ξ

Γ

Γ
Γ

=

⎛ ⎞
⎜ ⎟
⎝ ⎠= ⋅

⎛ ⎞
⎜ ⎟
⎝ ⎠

% % . (13) 

In terms of the Green’s function (8) – (9), the solution of (10) – (11) is given by 

 ( ) ( ) ( ) ( )
1 1

1 1 1

1 0 1 1 1 1 1 1
1 10 0 00 1

, L Lx d x d x d xγ
η η

ξ η ξ ξ ξ ξ η η
η ηΓ Γ

11 1

L

ξ
ξ

= = =

∂ ∂
= − −

∂ ∂∫ ∫ ∫% % % %
∂
∂

. (14) 

An expression for  is obtained in a similar fashion.  Equation (14) and the corresponding equation 

for  define linear integral operators 

y%

y% X
)

 and Y
)

 that relate the mapping fluctuations inside the flow 

domain, ),(~ ηξx  and ),(~ ηξy , to their counterparts on the moving interface, γx~  and γy~ , 

 ( ),x X xγξ η = ⋅
)

% % ,             ( ),y Y yγξ η = ⋅
)

% % . (15) 

 

4. Transformed Flow Equations.  Let the subscripts ξ  and η  denote the partial derivatives with 
respect to ξ  and η , respectively, and  

 ( , )
( , )
x yJ x y x yξ η ηξ η ξ

∂
= = −

∂
 (16) 

denote the mapping Jacobian.  Then  

 
y y

x J J
η ξ

ξ η
∂ ∂ ∂

= −
∂ ∂ ∂

,             
x x

y J J
η ξ

ξ η
∂ ∂ ∂

= − +
∂ ∂ ∂

, (17) 

and (1) becomes 

 1 1 2 2 ( ( , ), ( , ))
y q y q x q x q

J f x yη ξ η ξ ξ η ξ η
ξ η ξ η

∂ ∂ ∂ ∂
− − + = ⋅

∂ ∂ ∂ ∂
. (18) 

The Darcy flux components  and  are given by  1q 2q

1 ( ( , ), ( , ))
y yh hq K x y
J J
η ξξ η ξ η

ξ η
⎡ ⎤∂ ∂

= − ⋅ −⎢ ⎥∂ ∂⎣ ⎦
,      2 ( ( , ), ( , ))

x xh hq K x y
J J
η ξξ η ξ η

ξ η
⎡ ⎤∂ ∂

= − ⋅ − +⎢ ⎥∂ ∂⎣ ⎦
.  (19) 

Substituting (19) into (18) and denoting F J f= ⋅  yields 

 11 22 12 21h h h hK K K K
ξ ξ η ξ ξ η η ξ
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

− − + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

F= , (20) 

where the components of the hydraulic conductivity tensor are given by 
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2 2

11 x y
K K

J
η η+

= ,         
2 2

22 x y
K K

J
ξ ξ+

= ,        12 21 x x y y
K K K

J
ξ η ξ+

= = η . (21) 

Since the mapping  is not orthogonal in general, W→Ω 12 21 0K K= ≠ .  A unifying form of (21) is 

 ( )1 1TK
αβαβ − −= ℜ ⋅ℜ ,          2,1, =βα ,        

x y
x y

K J

ξ ξ

η ηℜ =
⋅

. (22) 

While hydraulic conductivity in the fixed coordinate system  was taken to be a scalar, 

hydraulic conductivity in the moving coordinate system 

),( yx

),( ηξ  becomes a second rank tensor.  Of 

course, (20) remains valid even if hydraulic conductivity in the  coordinate system were a 

tensor. 

),( yx

 

Since the transformed flow equations involve first derivatives , , , and , the boundary ξx γx ξy γy Γ  

(or, more precisely, its ensemble mean) must be at least once differentiable.  This explains the 

existence condition for the mapping W→Ω  in Section 3. 

 

Boundary conditions for (20) are derived by rewriting (2) in the moving coordinate system.  This 

gives, for Dirichlet and Neumann boundaries, 

 ( 0, ) ( ( ), ( )D Dh H x y )ξ η ηΓ Γ= = η 0,              ( 1, )h ξ η= = ,   (23a) 

( ) ( )( )22 21 2 2
0 0 0 0 0 00

, ( ( ), ( )) ( ( ), ( ))h hq K x y K x y x y Q x yη ξ ξξ
ξ ξ ξ ξ ξ

η ξΓ Γ Γ Γ Γ Γ=

∂ ∂
− = − = + ⋅

∂ ∂
ξ , (23b) 

( ) ( )( )22 21 2 2
1 1 1 1 1 11

, ( ( ), ( )) ( ( ), ( ))h hq K x y K x y x y Q x yη ξ ξξ
ξ ξ ξ ξ ξ

η ξΓ Γ Γ Γ Γ Γ=

∂ ∂
− = − = − + ⋅

∂ ∂
ξ . (23c) 

The equations for the interface dynamics become (Appendix B) 

 xx h
t
γ χ

ξ
∂ ∂

=
∂ ∂

,              yy h
t
γ χ

ξ
∂ ∂

=
∂ ∂

, (24a) 

where 

 x

e

yK
n J

γχ
η

∂
= −

∂
,              y

e

xK
n J

γχ
η

∂
=

∂
. (24b) 

 

Introducing a new notation for the coordinates 1ξ ξ=  and 2ξ η= , and for the components of the 

Darcy flux  and , and using the Einstein summation convention allows us to rewrite 

(18) – (19) in a compact form 

ξqq =1
ηqq =2
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 Jfq
=

∂
∂

α

α

ξ
,           β

αβα

ξ∂
∂

−=
hKq . (25) 

Introducing hydraulic resistivity, 

 ( ) ( )αβαβαβ TKZ ℜ⋅ℜ== −1 , (26) 

recasts the flow equation (25) as 

 Jfq
=

∂
∂

α

α

ξ
,           βαβ

αξ
qZh

−=
∂
∂

,           ( ) ., 21 W∈ξξ  (27) 

This is the form we use below to derive moment equations for the hydraulic head and the interface 

dynamics. 

 

5. Statistical Moments of Head.  Stochastic averaging of the flow equation (27), defined on the 

fixed domain W and subject to the Dirichlet and Neumann boundary conditions (23a) – (23c), has 

received considerable attention.  Most of such studies have assumed that hydraulic conductivity 

(resistivity) is a scalar, while in (27) it is a tensor. 

 

To simplify presentation, we assume deterministic initial conditions and set the source function and 

boundary fluxes to zero, i.e.  and 0≡f 0≡Q .  Taking the ensemble average of (27) and (23) yields 

equations for the mean hydraulic head, 

 0qα
αξ

∂
=

∂
,          

h Z q Z qαβ β αβ β
αξ

∂
− = +

∂
% % . (28) 

This equation is subject to the boundary conditions 

( ) ( )1 2 2
00, ,h H tξ ξ ξ= = ,       ( )1 21, 0ξ ξ ,       ( )2 1 2, 0q ξ ξ 0= = ,       ( )2 1 2, 1q ξ ξ 0= = . (29) h = =

The presence of an unknown second moment βαβ qZ ~~  in the equation for the first moment h  is 

known as a closure problem.  One of the most widely used closures is obtained through perturbation 

expansions of the relevant random fields, such as hydraulic resistivity, hydraulic head, and their 

moments in the powers of the conductivity fluctuations.  The second-order approximation of 
βαβ qZ ~~  gives rise to the non-local mean Darcy equation (see Appendix A), 

 ( ) 2
1

1
11

1

0

1

0
1

1 )(~~)(~~
11111111 ξξ

ξ
ββββαααββββααααβ

α ddqZTZqZZZZh ξξ ∫ ∫+⎥⎦
⎤

⎢⎣
⎡ −=

∂
∂

− − . (30) 
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(Appendix A also outlines a procedure for calculating the head covariance.)  Here )(ξZZ = , 

, and )( 11 ξZZ =

 ( ) ( ) 12

22

2111 1
1

1

1
2

1 ),( ββ

βα

ααβα

ξξ
−−

∂∂
∂

= ZEZT ξξ
, (31) 

where  is the Green’s function defined as a solution of )|( 21 ξξE

 ( ) ( ) (1 1 1
2 1 2 1

2 2

Z E
αβ

α β )2 2δ ξ ξ δ ξ ξ
ξ ξ

−∂ ∂
= − − −

∂
, (32a) 

subject to the boundary conditions 

0),1|(),0|( 2
2

1
21

2
2

1
21 ==== ξξξξ ξξ EE ,           ( )

2
2

21

2 0

0GZ
α

α
ξ

ξ
−

=

∂
=

∂
,           ( )

2
2

21

2 1

0GZ
α

α
ξ

ξ
−

=

∂
=

∂
. (32b) 

 

To obtain the second-order approximations of the correlation matrices of αβZ~  in (30), we linearize 

the random fluctuations αβZ~  about the corresponding means, 

 ( ))(),(~)(~)(~);~,~,~(~ ξξξξξ yxKZyZxZKyxZ Kyx ⋅+⋅+⋅≈ αβαβαβαβ , (33a) 

where , , and  are the linear deterministic operators, αβ
xZ αβ

yZ αβ
KZ

2 2

2 2

0
1 1

0
x

x y
x y x x y y

Z y
x x y y x yx y x y K x y

ξ ξ
ξ ξ ξ η ξ ηαβ

η ξ
ξ η ξ η η ηξ η η ξ

η η

ξ η
y

ξ η
ξ η

∂ ∂⎛ ⎞+⎜ ⎟+ +∂ ∂ ⎛ ⎞∂ ∂⎜ ⎟= − ⎜ ⎟+ +∂ ∂− ⎜ ∂ ∂⎝ ⎠+⎜ ⎟∂ ∂⎝ ⎠

−
⎟

, (33b) 

2 2

2 2

0
1 1

0
y

x y
x y x x y y

Z x
x x y y x yx y x y K x y

ξ ξ
ξ ξ ξ η ξ ηαβ

ξ η
ξ η ξ η η ηξ η η ξ

η η

ξ η
x

η ξ
ξ η

∂ ∂⎛ ⎞+⎜ ⎟+ +∂ ∂ ⎛ ⎞∂ ∂⎜ ⎟= − ⎜ ⎟+ +∂ ∂− ⎜ ∂ ∂⎝ ⎠+⎜ ⎟∂ ∂⎝ ⎠

−
⎟

, (33c) 

and 

 
2 2

2 2
1

K

x y x x y y
Z

x x y y x yK
ξ ξ ξ η ξαβ

ξ η ξ η η η

+ +
= −

+ +
η . (33d) 

Hence, up to second order, the correlation matrices in (30) can be expressed in terms of the cross-

correlations between x~ , y~ , and K~ .  In turn, (15) relates the statistics of x~ , and y~  to the statistics of 

the interface fluctuations γx~  and γy~ . 
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6. Statistical Moments of the Interface Dynamics.  The ensemble averaging of (24) yields 

 x xx h h
t
γ χ χ

ξ ξ
∂ ∂ ∂

= +
∂ ∂ ∂

%
% . (34) 

To derive an approximate expression for the mixed moment in (34), we note that, up to second order 

in the conductivity fluctuations, xχ%  ( )x x xχ χ χ= + %  can be written as  

 ( , , )x x x
k x y

xx y K K x yγ γ γχ χ χ≈ + +% %% % % % %γχ , (35a) 

where x
kχ , x

xχ , x
yχ  are deterministic coefficients, 

 
( )2

x
x

e

Ky
y y

n x y x y
γη

γξ γη

γξ γη γη γξ

χ
η ξ

⎛ ⎞∂ ∂
= −⎜ ⎟∂ ∂⎝ ⎠−

, (35b) 

 
( )2

x
y

e

Ky x y x y
x x

yn x y x y
γη γξ γη γη γξ

γξ γη
γηγξ γη γη γξ

χ
η η ξ

⎛ ⎞− ∂ ∂ ∂
= ⎜ ⎟⎜ ⎟− +

∂ ∂ ∂− ⎝ ⎠
, (35c) 

and 

 ( )
x
K

e

y
n x y x y

γη

γξ γη γη γξ

χ =
−

. (35d) 

Subtracting (34) from (24) and omitting the terms of orders higher than second gives  

 x xx h h
t
γ χ χ

ξ ξ
∂ ∂ ∂

= +
∂ ∂ ∂

%%
% . (36) 

Substituting (35) and a similar expansion for the hydraulic head fluctuations h~  into (36) leads to 

 )(~),()(~),()(~),(
)(~

3313311
1 ηηηηηηη

η
γγ

γ yXxXKX
t

x
yxk ++=

∂
∂

νν , (37a) 

where the deterministic coefficients kX , xX , yX  are given by  

 
( ) ( ) 2

1

1

0

1

0

1
1

1

1
1

1
2

1
11| ξξ

ξξ
χ

ξ
χ ββα

δ
αα

αδδ ddqZZEhX xx ∫ ∫ −

∂∂
∂

−
∂
∂

=
ξξ

,       , ,k x yδ =  (37b) 

Similarly, an equation for yγ%  is 

 )(~),()(~),()(~),(
)(~

3313311
1 ηηηηηηη

η
γγ

γ yYxYKY
t

y
yxk ++=

∂
∂

νν . (38) 
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Equations for the covariances )(~)(~),( 2121 ηηηη γγ
γ xxCxx =  and )(~)(~),( 2121 ηηηη γγ

γ yyCyy = , and the 

cross-covariance )(~)(~),( 2121 ηηηη γγ
γ yxCxy =  are derived from (37) and (38) by noting that 

 )(~)(~
)(~)(~),(

1
2

2
121 η

η
η

ηηη
γ

γ
γ

γ
γ

x
t

x
x

t
x

t
Cxx

∂
∂

+
∂

∂
=

∂
∂

, (39a) 

and 

 )(~)(~
)(~)(~),(

1
2

2
121 η

η
η

ηηη
γ

γ
γ

γ
γ

x
t

y
y

t
x

t
Cxy

∂
∂

+
∂

∂
=

∂
∂

. (39b) 

This gives 

 

),,(),(),(),(),(),(

),(),(),(),(),(),(),(

3132313212

3231323121
21

ηηηηηηηηηη

ηηηηηηηηηηηη

γγγ

γγγ
γ

yyyxxxKxk

yyyxxxKxk
xx

CXCXCX

CXCXCX
t

C

+++

++=
∂

∂

νν

νν
 (40) 

 

),,(),(),(),(),(),(

),(),(),(),(),(),(
),(

3132313212

3231233121
21

ηηηηηηηηηη

ηηηηηηηηηη
ηη

γγγ

γγγ
γ

xyyxxxKxk

yyyxyxKyk
xy

CXCXCX

CXCXCX
t

C

+++

++=
∂

∂

νν

νν
 (41) 

and an equation for , which is analogous to (40). ),( 21 ηηγ
yyC

 

We start the derivation of approximate solutions for the cross-covariances )(~)(~),( ηη γ
γ xKCKx νν =  

and )(~)(~),( ηη γ
γ yKCKy νν =  by noting that second-order approximations require ( ),K K x y=% % , 

while the dependence of conductivity fluctuations, K~ , on x%  and  manifests itself in the third- and 

higher-order terms.  Then 

y%

 
K x K y K
t t x t y

∂ ∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂

% % %
 (42) 

and (42) can be written in the following form 

 KC
t
K ~~ )

=
∂
∂

. (43a) 

It follows from (9) that the deterministic linear operator C
)

 has the form 

 
ξ

U
∂
∂

=C
)

, (43b) 

where , TUU ),( 21=U
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1221

22

1
ξξξξ

ξξ

yxyx
t
yx

t
xy

U
−

∂
∂

−
∂
∂

= ,           
1221

11

2
ξξξξ

ξξ

yxyx
t
yx

t
xy

U
−

∂
∂

+
∂
∂

−
= , (43c) 

and 

 1

1

0 1

1

1

11

),(
),(),1|(

),(
),(

η
η
η

ξ
ηξ

γ

γ d
ty
tx

t
L

ty
tx

t ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
=∂

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂ ξ

ξ
ξ

. (43d) 

Combining (43) and (37) gives 

 ),(),(),(),(),(),(),(),(),(
11111111 ηηηηηηρηηη γγγ

γ

ννννννννν
KyyKxxKkKx

Kx CXCXXCC
t

C
+++=

∂
∂ )

. (44) 

Similarly, combining (43) and (38) leads to an equation for . ),( ηγ νKyC

 

Equations (40), (41), and (44) are subject to the homogeneous initial conditions.  The conductivity 

correlation function in the moving coordinate system ),( 1ννKρ  at time t is computed, to second 

order in the conductivity fluctuations, at the mean coordinates. 

 

7. Numerical Algorithm.  We present a detailed description of our numerical algorithm and its 

implementation in a companion paper.  A brief outline is as follows. 

• Given the mean location of the interface at time t, solve (3) – (4) to construct the dynamic 

mapping . W→Ω

• Compute the correlation matrices in the mean Darcy law (30). 

• Solve the mean flow equation and the second moment equation (Appendix A) to obtain the 

mean hydraulic head h  and the hydraulic head variance . 2
hσ

• Calculate the mean velocity of the interface from (34) and compute the mean position of the 

interface at time t t . + ∆

• Solve equations (40), (41), and (44) to obtain cross-covariances , , , and  at 

time t t . 

γ
xxC γ

yyC γ
xyC γ

KyC

+ ∆

• Repeat calculations. 

 

8. A Computational Example.  While in general our moment equations have to be solved 

numerically, some flow scenarios are amenable to analytical treatment.  Consider the one-

dimensional front propagation in a randomly heterogeneous porous medium of log-normal hydraulic 

 13



conductivity, YK ln= , with the geometric mean )exp(YKg = , variance , correlation function 2
Yσ

Yρ , and correlation length λ .  The front is driven by hydraulic head  imposed at the 

boundary . 

0)0( Hh =

0=x

 

We recast the problem in a dimensionless form by introducing 

 
λ
xxd = ,        2

02
λe

g
d n

HtK
t = ,        

g
d K

KK = ,        and        
0H

hhd = . (45) 

In the following, we drop the subscript d. 

 

8.1. Mapping.  Solving the one-dimensional version of (3) yields a mapping  

 x xγξ= , (46a) 

whose Jacobian is 

 γξ
xxJ =

∂
∂

= . (46b) 

 

8.2. Transformed flow equations.  The mapping (46) transforms the flow equations into the one-

dimensional version of (27), 

 0=
∂
∂
ξ
q

,        Zqh
−=

∂
∂
ξ

,           (0) 1h = ,           (1) 0h =     (47a) 

Hydraulic resistivity 11ZZ ≡  is obtained from (22) and (26) as 

 . (47b) 1−= KxZ γ

 

8.3. Statistical moments of head.  The one-dimensional version of (28) gives 

 0=
∂
∂
ξ
q

,           qZqZh ~~−−=
∂
∂
ξ

,           1)0( =h ,           (1) 0h = . (48) 

We seek the first-order approximation of the mean head, i.e., )( 4)1()0(
YOhhh σ++= . 

 

It follows from (47b), )()2/1( 42
YYg OKK σσ ++= , and )(~ 422

YY OK σσ += , that  

 ... tohzxZ += γ ,           and           ...~~ tohzxZ += γ , (49a) 

where 
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ξ

ξσ
∂
Φ∂

−Φ−+=
2

1
2
Yz ,           K

x
x

z ~~
~ −=

γ

γ , (49b) 

and γγ xxK /~~=Φ  and ( )( )~~ ξxKK = .  Within the first-order framework, the random field zzz ~+=  

represents a normalized dimensionless hydraulic resistivity, i.e., γxZz /= .  

 

The one-dimensional Green’s function in (32) has the form 

 ( ) ( ) ( ) ( )1 1 1 1|E 1ξ ξ ξ ξ θ ξ ξ ξ= − − + − ξ , (50) 

where ( )θ ξ  is the Heaviside function defined as 1θ =  for 0ξ ≥ and 0θ = otherwise.  Substituting 

(50) into the one-dimensional versions of (30) and (31), and introducing qxQ γ= , yields a solution 

for the mean hydraulic head, 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∂
∂

− ∫
1

0

),()( ννξξ
ξ

dCzQh
z ,            0Q

ξ
∂

=
∂

. (51) 

Integrating the first equation in (51), while taking into account the boundary conditions (47a), yields 

 

11

0

1

0

1

0

),()(
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∫ ∫ ∫ νµνµνν ddCdzQ z . (52) 

It follows from (49b) that the covariance function )(~)(~),( νµνµ zzCz =  in (51) and (52) is given by  

 ( )( , ) ( ) ( ) ( )z YC x rγ γµ ν ρ µ ν µ ν= − − Φ − Φ + , (53) 

where 2 /r 2xγ γ γσ=  is the square of the coefficient of variation of the interface, 22 ~
γγσ x=  being the 

variance of the interface position. 

 

By the same token, substituting (50) into the one-dimensional versions of (A3) and (A4) yields an 

expression for the random fluctuations of hydraulic head, 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∫∫

ξ

ννννξξ
0

1

0

)(~)(~)(~ dzdzQh ,           ∫−=
1

0

)(~~ νν dzQQ . (54) 

Hence, the variances of hydraulic head and flux are given by  

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−= ∫ ∫ ∫ ∫ ∫ ∫

1

0

1

0

1

0 0 0 0

222 ),(),(2),(
ξ ξ ξ

νµνµνµνµξνµνµξσ ddCddCddCQ zzzh  (55) 

and 
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 ∫ ∫=
1

0

1

0

22 ),( νµνµσ ddCQ zQ , (56) 

respectively. 

 

8.4. Statistical moments of the interface dynamics.  The equations of motion can now be written as  

 
γ

γ ξ
x

Q
t

x
2

)1( =
=

∂
∂

,        
γ

γ ξ
x

Q
t

x
2

)1(~~ =
=

∂
∂

. (57) 

Recalling the definition of  in (49b), it follows from (57) that z%

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∫∫
γ

γ

γγ

γ

γγ

γ νννν
x
x

dxK
x

Q
x
x

dz
x

Q
x
x

t

~
2)]([~

2

~
)(~

2

~ 1

0
2

1

0
2 . (58) 

The one-dimensional version of (43) gives an equation for the conductivity fluctuations, 

 
ξ

ξ
ξ

ξ

γ

γ

γ ∂
∂

=
∂
∂

∂
∂

=
∂
∂ K

x
QK

t
x

xt
K ~

2

~~
2 . (59) 

Combining (58) and (59) leads to equations for the covariances rγ  and Φ , 

 ⎥
⎦

⎤
⎢
⎣

⎡
−Φ=

∂
∂

∫ γ
γ

γ νν rd
x
Q

t
r

2)(
1

0
2  (60) 

and 

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
Φ−=

∂
Φ∂

−
∂
Φ∂

∫ )(2)(),(
22

1

0
22 ξννξρ

ξ
ξ

γγ

dxx
x

Q
x

Q
t Y . (61) 

For the homogeneous initial conditions, the solutions of (60) and (61) are  

 ( )∫ ∫ −−−=
1

0

1

0

)()1)(1( ηξηξρηξ γγ ddxr Y  (62) 

and 

 (∫ −−=Φ
1

0

)()1()( ηηξρηξ γ dxY ) , (63) 

respectively.  Equations (51) - (53), (55) - (57), (62), and (63) form a closed set of deterministic 

equations for the statistics of the interface dynamics and related state variables. 

 

8.5. Comparison with the exact solution.  The one-dimensional flow equations (47) can be 

integrated exactly to obtain  
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 ,          . (64) ∫−−=
ξ

νν
0

1 )(1 dzQh ∫=−
1

0

1 )( νν dzQ

The statistics for the interface dynamics can be computed exactly for perfectly correlated porous 

media ( ∞→λ ), so that hydraulic conductivity K  and the normalized hydraulic resistivity  

become random constants [8].  Then (64) yields [8] 

z

 1 xh
xγ

= − ,         Kq
xγ

= ,         , (65) Ktx =2
γ

so that the mean and variance of the interface position are given by  

 [ ] tx Y

exact
8/2

eσ
γ =         and         [ ] ( )tYY

exact
4/2/2 22

ee σσ
γσ −= , (66) 

respectively.  Thus the mean position of the interface scales as t , while its variance is linearly 

proportional to .  Additionally, the normalized cross-covariance t γγ xxK /~~=Φ  has the form 

 [ ] 8/58/9 2
Y

2
Y ee σσ −=Φ exact  (67) 

and is time invariant. 

 

We now proceed to compare our first-order perturbation solutions derived in the previous section 

with their exact counterparts.  Since for perfectly correlated media , (60) and (61) yield 2
YYC σ=

 
2

4
Yrγ

σ
=         and        

2

2
Yσ

=Φ , (69) 

respectively.  Then it follows from (49b) that 1z =  and , so that (52) gives 2 2z Y Yrγσ ρ σ≡ − Φ + = 2 / 4

 
12

4
1

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= YQ σ . (70) 

Combining (57) and (70) results in 

 tOttQx Y
Y

Y
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

−
== )(

8
1

4/1
4

2

2 σσ
σγ  (71) 

and 

 
22 2 2

2 2 41 (
4 8 4

Y Y Y
Y )x r t Oγ γ γ

σ σ σσ
⎛ ⎞ ⎛

≡ = + = +⎜ ⎟ ⎜
⎝ ⎠ ⎝

tσ
⎞
⎟
⎠

. (72) 
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It is easy to see that the perturbation solutions (71) and (72) for the statistics of the interface 

dynamics coincide, up to second order in the log conductivity variance , with their exact 

counterparts (66).  While these perturbation solutions are formally valid for , this comparison 

shows that they remain accurate for  as large as 2.  Additionally, up to any order in  they have 

the same scaling laws. 

2
Yσ

12 <Yσ

2
Yσ 2

Yσ

 

Another advantage of the proposed approach is that it involves relative fluctuations of the dependent 

and independent random fields, e.g., γγ xx /~  and QQ /~ , rather than their absolute counterparts, e.g., 

γx~  and Q~ .  The former can be small even when the latter are large, which is important for the 

accuracy of our perturbative solutions.  In particular, the coefficient of variation 

4//~ 222
Yxx σρ γγγ =≡  remains smaller than unity as long as , while the corresponding 

variance 

42 <Yσ

4/~ 22
Ytx σγ =  increases with time t  and, hence, can be arbitrary large. 

 

9. Summary.  We considered interface dynamics in heterogeneous environments with uncertain 

parameters.  While our approach is applicable to a wide range of applications, we formulate it in 

terms of free-surface flow in porous media.  To predict the evolution of a fluid-fluid interface and to 

quantify the uncertainty associated with such a prediction, we treated the hydraulic conductivity 

(permeability) of a porous medium as random and the corresponding governing equations as 

stochastic.  The previous attempts to address this problem involve mathematical objects -- such as 

integrals of random functions over random domains and random functionals -- that are not readily 

amenable to standard perturbation techniques.  To overcome this difficulty, we introduced a dynamic 

stochastic mapping of the domain with moving boundaries onto a fixed domain.  This allowed us to 

use the well-understood ensemble averaging approaches to derive deterministic differential equations 

for the statistical moments of hydraulic head, Darcian flux, and interface dynamics. 

 

We used perturbation expansions in a small parameter , the variance of log hydraulic 

conductivity, to derive closure approximations for these moment equations.  This formally limits the 

applicability of our approach to mildly heterogeneous porous media ( ).  However, the 

comparison of analytical solutions of the one-dimensional moment equations with their exact 

solutions demonstrates that the perturbation approximations remain accurate for  as large as 4. 

2
Yσ

12 <Yσ

2
Yσ
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We demonstrated that, for one-dimensional flow, the mean position of the interface scales as t , 

while its variance is linearly proportional to t .  These findings are in line with previous studies [8]. 

 

Appendix A.  Mixed Moments.  To derive the second-order approximation of βαβ qZ ~~  in (24), we 

consider an equation for the hydraulic head and flux fluctuations, which is obtained by subtracting 

(24) and (25) from (23) and (22) and retaining the terms up to 2Z% -order, 

 0qα
αξ

∂
=

∂
% ,            

h Z q Z qαβ β αβ β
αξ

∂
− = +

∂

%
%%  (A1)  

subject to the boundary conditions 

 ( )1 20, 0h ξ ξ= =% ,  ( )1 21, 0h ξ ξ= =% ,  ( )2 1 2, 0 0 ( )2 1 2, 1 0q ξ ξ = =%q ξ ξ = =% ,  . (A2) 

In terms of , the Green’s function defined by (28), the solution of (A1) – (A2) is )|( 21 ξξE

 ( )∫ ∫ −

∂
∂

−=
1

0

1

0

2
1

1
1

1

1

1 11 ~)|()(~ ξξ
ξ

ββααα

α ddqZZEh ξξξ . (A3) 

It follows from (21), (22), and (A3) that  

 ( ) ( ) ( )∫ ∫ −−−

∂∂
∂

+−=
1

0

1

0

2
1

1
1

1

1

1
2

11 222

21

111 ~)|()(~)(~ ξξ
ξξ

ββββα

αα

ααββαααα ddqZZEZqZZq ξξξξ . (A4) 

Substituting (A4) into (24) gives the non-local mean Darcy’s law (30).  (Co)variances of the 

hydraulic head and the Darcy flux are obtained by squaring (A3) and (A4) and taking the ensemble 

mean. 

 

Appendix B.  Equations for the Interface Dynamics.  The mapping  transforms the 

dynamics conditions on the interface (2) into 

W→Ω

 nV=⋅qnγ . (B1) 

and 

 
( , )
( , )

x

e

x V x y
t n x y
γ γ γ

γ γ

∂
=

∂
,        

( , )
( , )

y

e

y V x y
t n x y
γ γ γ

γ γ

∂
=

∂
. (B2) 

Here ( , )x x tγ γ η= , ( , )y y tγ γ η= , and the normal to the free surface is given by 

 
22 )/()/(

)/()/(

ηη

ηη
γ
γ

γγ

γγ
γ

∂∂+∂∂

∂∂−∂∂
=

∇
∇

=
yx

xy yx ee
n , (B3) 
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where  and  denote the unit vectors in the Cartesian (xe ye , )x y  coordinate system. 

 

Substituting (B3) and the Darcy flux (19) evaluated at the interface into (B1) yields 

 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+
∂
∂

∂
∂

−
∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂∂+∂∂
−=

ηηξηξξηηηη
γγγγγγ

γγ

hyyxxhyx

yxJ
KVn

22

22 )/()/(
. (B4) 

Since the interface is an equipotential, i.e. a surface of the constant hydraulic head, the tangential 

derivative of the hydraulic head 0/ ≡∂∂ ηh .  Hence it follows from (B4) and (B3) that the 

components of the interface velocity vector γnV nV=  are given by 

 
ξη

γ

∂
∂

∂
∂

−=
hy

J
KVx      and     

ξη
γ

∂
∂

∂
∂

=
hx

J
KVy . (B5) 

Substituting (B5) into (B2 gives (24). 
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